124 research outputs found

    Information Splitting for Big Data Analytics

    Full text link
    Many statistical models require an estimation of unknown (co)-variance parameter(s) in a model. The estimation usually obtained by maximizing a log-likelihood which involves log determinant terms. In principle, one requires the \emph{observed information}--the negative Hessian matrix or the second derivative of the log-likelihood---to obtain an accurate maximum likelihood estimator according to the Newton method. When one uses the \emph{Fisher information}, the expect value of the observed information, a simpler algorithm than the Newton method is obtained as the Fisher scoring algorithm. With the advance in high-throughput technologies in the biological sciences, recommendation systems and social networks, the sizes of data sets---and the corresponding statistical models---have suddenly increased by several orders of magnitude. Neither the observed information nor the Fisher information is easy to obtained for these big data sets. This paper introduces an information splitting technique to simplify the computation. After splitting the mean of the observed information and the Fisher information, an simpler approximate Hessian matrix for the log-likelihood can be obtained. This approximated Hessian matrix can significantly reduce computations, and makes the linear mixed model applicable for big data sets. Such a spitting and simpler formulas heavily depends on matrix algebra transforms, and applicable to large scale breeding model, genetics wide association analysis.Comment: arXiv admin note: text overlap with arXiv:1605.0764

    Review of Performance Pay at County Level Public Hospitals

    Get PDF
    Performance pay in county-level public hospitals is an important part of the reform of public hospitals, which largely determines the success or failure of the reform of public hospitals. This paper reviews the concept of performance pay, the recognition of hospitals and staff, the main performance pay model, current situation, design principles and ideas in County-level Public hospitals, and provides some reference for future research and reform direction of performance pay in County-level Public hospitals

    Smart solar concentrators for building integrated photovoltaic façades

    Get PDF
    In this study a novel static concentrating photovoltaic (PV) system, suitable for use in windows or glazing façades, has been designed. The developed smart Concentrating PV (CPV) system is lightweight, low cost and able to generate electricity. Additionally, this system automatically responds to climate by varying the balance of electricity generated from the PV with the amount of solar light and heat permitted through it into the building. It therefore offers the potential to contribute to, and control, energy consumption within buildings. A comprehensive optical analysis of the smart CPV is undertaken via 3-D ray tracing technique. To obtain optimal overall optical performance of the novel smart CPV analysis has been based upon all necessary design parameters including the average reflectivity of the thermotropic reflective layer, the glazing cover dimension, the glazing cover materials as well as the dimensions of the solar cells. In addition, a hydroxypropyl cellulose (HPC) hydrogel polymer, suitable for use as the reflective thermotropic layer for the smart CPV system, was synthesized and experimentally studied

    Effects of Kevlar® 29 yarn twist on tensile and tribological properties of self-lubricating fabric liner

    Get PDF
    Yarn twist in textile technology is an important characteristic since it considerably affects the properties of knitted or woven fabrics. Many researchers have investigated the effect of staple-spun yarn twist on the properties of the yarns and fabrics. However, the effects of twist level of Kevlar® 29 filament yarn on the properties of yarn and its resin-impregnated self-lubricating fabric liner are not fully known yet. In this study, we have investigated the effects of Kevlar® 29 twist level on the tensile and tribological properties of the fabric liner (Kevlar® 29/polytetrafluoroethylene fabric-resin composite). Two unexpected findings about the effect of yarn twist have been observed, namely (1) asynchronous twist effect on the yarn’s and the liner’s tensile strength and (2) dissimilar yarn twist effect on the liner’s performance. These findings are mainly attributed to the synergic contributions of the yarn twist and strength and the interaction of the resin with the yarn orientation in the woven fabric structure of the liner

    Coexistence of multiuser entanglement distribution and classical light in optical fiber network with a semiconductor chip

    Full text link
    Building communication links among multiple users in a scalable and robust way is a key objective in achieving large-scale quantum networks. In realistic scenario, noise from the coexisting classical light is inevitable and can ultimately disrupt the entanglement. The previous significant fully connected multiuser entanglement distribution experiments are conducted using dark fiber links and there is no explicit relation between the entanglement degradations induced by classical noise and its error rate. Here we fabricate a semiconductor chip with a high figure-of-merit modal overlap to directly generate broadband polarization entanglement. Our monolithic source maintains polarization entanglement fidelity above 96% for 42 nm bandwidth with a brightness of 1.2*10^7 Hz/mW. We perform a continuously working quantum entanglement distribution among three users coexisting with classical light. Under finite-key analysis, we establish secure keys and enable images encryption as well as quantum secret sharing between users. Our work paves the way for practical multiparty quantum communication with integrated photonic architecture compatible with real-world fiber optical communication network

    Extraction of Electron Self-Energy and Gap Function in the Superconducting State of Bi_2Sr_2CaCu_2O_8 Superconductor via Laser-Based Angle-Resolved Photoemission

    Full text link
    Super-high resolution laser-based angle-resolved photoemission measurements have been performed on a high temperature superconductor Bi_2Sr_2CaCu_2O_8. The band back-bending characteristic of the Bogoliubov-like quasiparticle dispersion is clearly revealed at low temperature in the superconducting state. This makes it possible for the first time to experimentally extract the complex electron self-energy and the complex gap function in the superconducting state. The resultant electron self-energy and gap function exhibit features at ~54 meV and ~40 meV, in addition to the superconducting gap-induced structure at lower binding energy and a broad featureless structure at higher binding energy. These information will provide key insight and constraints on the origin of electron pairing in high temperature superconductors.Comment: 4 pages, 4 figure

    17β-Estradiol Enhances Schwann Cell Differentiation via the ERβ-ERK1/2 Signaling Pathway and Promotes Remyelination in Injured Sciatic Nerves

    Get PDF
    Remyelination is critical for nerve regeneration. However, the molecular mechanism involved in remyelination is poorly understood. To explore the roles of 17β-estradiol (E2) for myelination in the peripheral nervous system, we used a co-culture model of rat dorsal root ganglion (DRG) explants and Schwann cells (SCs) and a regeneration model of the crushed sciatic nerves in ovariectomized (OVX) and non-ovariectomized (non-OVX) rats for in vitro and in vivo analysis. E2 promoted myelination by facilitating the differentiation of SCs in vitro, which could be inhibited by the estrogen receptors (ER) antagonist ICI182780, ERβ antagonist PHTPP, or ERK1/2 antagonist PD98059. This suggests that E2 accelerates SC differentiation via the ERβ-ERK1/2 signaling. Furthermore, E2 promotes remyelination in crushed sciatic nerves of both OVX and non-OVX rats. Interestingly, E2 also significantly increased the expression of the lysosome membrane proteins LAMP1 and myelin protein P0 in the regenerating nerves. Moreover, P0 has higher degree of colocalization with LAMP1 in the regenerating nerves. Taking together, our results suggest that E2 enhances Schwann cell differentiation and further myelination via the ERβ-ERK1/2 signaling and that E2 increases the expression of myelin proteins and lysosomes in SCs to promotes remyelination in regenerating sciatic nerves

    Generation and Comprehensive Analysis of Host Cell Interactome of the PA Protein of the Highly Pathogenic H5N1 Avian Influenza Virus in Mammalian Cells

    Get PDF
    Accumulating data have identified the important roles of PA protein in replication and pathogenicity of influenza A virus (IAV). Identification of host factors that interact with the PA protein may accelerate our understanding of IAV pathogenesis. In this study, using immunoprecipitation assay combined with liquid chromatography-tandem mass spectrometry, we identified 278 human cellular proteins that might interact with PA of H5N1 IAV. Gene Ontology annotation revealed that the identified proteins are highly associated with viral translation and replication. Further KEGG pathway analysis of the interactome profile highlighted cellular pathways associated with translation, infectious disease, and signal transduction. In addition, Diseases and Functions analysis suggested that these cellular proteins are highly related with Organismal Injury and Abnormalities and Cell Death and Survival. Moreover, two cellular proteins (nucleolin and eukaryotic translation elongation factor 1-alpha 1) identified both in this study and others were further validated to interact with PA using co-immunoprecipitation and co-localization assays. Therefore, this study presented the interactome data of H5N1 IAV PA protein in human cells which may provide novel cellular target proteins for elucidating the potential molecular functions of PA in regulating the lifecycle of IAV in human cells

    PPIP5K2 and PCSK1 are Candidate Genetic Contributors to Familial Keratoconus

    Get PDF
    Keratoconus (KC) is the most common corneal ectatic disorder affecting >300,000 people in the US. KC normally has its onset in adolescence, progressively worsening through the third to fourth decades of life. KC patients report significant impaired vision-related quality of life. Genetic factors play an important role in KC pathogenesis. To identify novel genes in familial KC patients, we performed whole exome and genome sequencing in a four-generation family. We identified potential variants in the PPIP5K2 and PCSK1 genes. Using in vitro cellular model and in vivo gene-trap mouse model, we found critical evidence to support the role of PPIP5K2 in normal corneal function and KC pathogenesis. The gene-trap mouse showed irregular corneal surfaces and pathological corneal thinning resembling KC. For the first time, we have integrated corneal tomography and pachymetry mapping into characterization of mouse corneal phenotypes which could be widely implemented in basic and translational research for KC diagnosis and therapy in the future

    MASH Explorer: A Universal Software Environment for Top-Down Proteomics

    Get PDF
    Top-down mass spectrometry (MS)-based proteomics enable a comprehensive analysis of proteoforms with molecular specificity to achieve a proteome-wide understanding of protein functions. However, the lack of a universal software for top-down proteomics is becoming increasingly recognized as a major barrier, especially for newcomers. Here, we have developed MASH Explorer, a universal, comprehensive, and user-friendly software environment for top-down proteomics. MASH Explorer integrates multiple spectral deconvolution and database search algorithms into a single, universal platform which can process top-down proteomics data from various vendor formats, for the first time. It addresses the urgent need in the rapidly growing top-down proteomics community and is freely available to all users worldwide. With the critical need and tremendous support from the community, we envision that this MASH Explorer software package will play an integral role in advancing top-down proteomics to realize its full potential for biomedical research
    corecore